Lyapunov stability solutions of fractional integrodifferential equations

نویسندگان

  • Shaher Momani
  • Samir Ben Hadid
چکیده

Lyapunov stability and asymptotic stability conditions for the solutions of the fractional integrodiffrential equations x (α) (t) = f (t, x(t)) + t t 0 K(t, s, x(s))ds, 0 < α ≤ 1, with the initial condition x (α−1) (t 0) = x 0 , have been investigated. Our methods are applications of Gronwall's lemma and Schwartz inequality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interval fractional integrodifferential equations without singular kernel by fixed point in partially ordered sets

This work is devoted to the study of global solution for initial value problem of interval fractional integrodifferential equations involving Caputo-Fabrizio fractional derivative without singular kernel admitting only the existence of a lower solution or an upper solution. Our method is based on fixed point in partially ordered sets. In this study, we guaranty the existence of special kind of ...

متن کامل

Lyapunov functions and convergence to steady state for differential equations of fractional order

We study the asymptotic behaviour, as t→∞, of bounded solutions to certain integrodifferential equations in finite dimensions which include differential equations of fractional order between 0 and 2. We derive appropriate Lyapunov functions for these equations and prove that any global bounded solution converges to a steady state of a related equation, if the nonlinear potential E occurring in ...

متن کامل

Stability and Boundedness of Stochastic Volterra Integrodifferential Equations with Infinite Delay

Wemake the first attempt to discuss stability and boundedness of solutions to stochastic Volterra integrodifferential equations with infinite delay (IDSVIDEs). By the Lyapunov-Krasovskii functional approach, we get kinds of sufficient criteria for stability and boundedness of solutions to IDSVIDEs. The main innovation here is that stochastic systems with infinite delay can retain stability and ...

متن کامل

Study on stability analysis of distributed order fractional differential equations with a new approach

The study of the stability of differential equations without its explicit solution is of particular importance. There are different definitions concerning the stability of the differential equations system, here we will use the definition of the concept of Lyapunov. In this paper, first we investigate stability analysis of distributed order fractional differential equations by using the asympto...

متن کامل

Ulam stabilities for nonlinear Volterra-Fredholm delay integrodifferential equations

In the present research paper we derive results about existence and uniqueness of solutions and Ulam--Hyers and Rassias stabilities of nonlinear Volterra--Fredholm delay integrodifferential equations. Pachpatte's inequality and Picard operator theory are the main tools that are used to obtain our main results. We concluded this work with applications of ob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2004  شماره 

صفحات  -

تاریخ انتشار 2004